6th Grade Math
Practice and Review

There’s something very mathematical about our universe, and the more carefully we look, the more math we seem to find. Where have you found math?
This packet is designed to be a review of the learning we have covered this year.

Do pages in whatever order you prefer.

My challenge for you is to use this time to become a master of **multiplication** and division facts. This will allow us to tackle more concepts when we return to school without having to focus on our calculations.

Math Fact Game Ideas

Flashcards (you can make your own!)

Multiplication War (Variations)
- Two players flip over one card each. Whoever says the product of the two cards first wins and keeps the cards.
- Each player flips two cards over. Whichever player has greatest product wins and keeps the cards.
- Each player flips over two cards. Each player writes down the product and adds the points to their score each round. Whoever reaches 500 points first is the winner.
- Roll 2 dice. The player to first say the product wins. (Challenge option ~ play with 3 dice)

Name your card
This game requires 3 players. Two of the players each draw a card without looking and place it on their forehead. The announcer then makes a statement. They either say the sum (+) of your cards is ____ or they may say the product (x) of your cards is ____. The players then race to identify the number their card is. Winner keeps the cards.
Optional Resources:

Aleks.com
This is a fabulous way to gain access to new topics. Pie challenge still stands! Please remember no calculators and no questions on knowledge checks. Pie offer still stands!

Mathantics.com
This website has math videos for a variety of concepts. If you get stuck working on the review packet, try looking for a video on the topic.

Khanacademy.org
This is a free website with short example videos and free practice problems. You can search by grade level or concept. With parent permission you can create an account to track your progress.

Google Classroom
Try the challenge Problem of the Day. Post your answer and check back the following day to see if you were correct. Family game ideas and optional concept worksheets are also posted.

Email me at mpurvis@kfschools.org if there is anything you need help with or any other resources you are interested in.
Multiplication Table

Robert the Multiplication Robot has lost a few of his screws! Help him complete the **multiplication table** by filling in the missing numbers.

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td></td>
<td>27</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>12</td>
<td></td>
<td></td>
<td>35</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td>48</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>36</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>55</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>40</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td></td>
<td>144</td>
</tr>
</tbody>
</table>
Crack the Fun Fact – Multiplication Facts

Discover a fun fact by completing the multiplication questions. Use your answers to match and place the letters in the boxes to reveal the message. Put the letter in every box that it matches your answer in (there may be more than one!)

The first one has been done for you.

7 x 1 = __________

2 x 8 = __________

12 x 4 = __________

9 x 6 = __________

5 x 4 = __________

9 x 10 = __________

12 x 12 = __________

3 x 9 = __________

9 x 8 = __________

7 x 5 = __________

11 x 5 = __________

4 x 7 = __________
<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>8</td>
<td>3</td>
<td>7</td>
<td>5</td>
<td>9</td>
</tr>
<tr>
<td>x 0</td>
<td>x 2</td>
<td>x 4</td>
<td>x 1</td>
<td>x 5</td>
<td>x 3</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>5</td>
<td>0</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>x 6</td>
<td>x 3</td>
<td>x 9</td>
<td>x 4</td>
<td>x 5</td>
<td>x 8</td>
</tr>
<tr>
<td>5</td>
<td>3</td>
<td>7</td>
<td>4</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>x 4</td>
<td>x 8</td>
<td>x 0</td>
<td>x 4</td>
<td>x 7</td>
<td>x 9</td>
</tr>
<tr>
<td>7</td>
<td>3</td>
<td>6</td>
<td>2</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>x 5</td>
<td>x 1</td>
<td>x 5</td>
<td>x 9</td>
<td>x 6</td>
<td>x 1</td>
</tr>
<tr>
<td>8</td>
<td>6</td>
<td>9</td>
<td>7</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>x 0</td>
<td>x 2</td>
<td>x 9</td>
<td>x 4</td>
<td>x 9</td>
<td>x 2</td>
</tr>
<tr>
<td>6</td>
<td>9</td>
<td>1</td>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>x 6</td>
<td>x 6</td>
<td>x 2</td>
<td>x 8</td>
<td>x 2</td>
<td>x 0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
</tr>
<tr>
<td>x 0</td>
<td>x 7</td>
<td>x 7</td>
<td>x 8</td>
<td>x 1</td>
<td>x 3</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>7</td>
<td>0</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>x 7</td>
<td>x 9</td>
<td>x 8</td>
<td>x 9</td>
<td>x 6</td>
<td>x 8</td>
</tr>
</tbody>
</table>
Crack the Fun Fact – DIVISION

Discover a fun fact by completing the division questions. Use your answers to match and place the letters in the boxes to reveal the message. Put the letter in every box that it matches your answer in (there may be more than one!)

The first one has been done for you.

10 ÷ 2 = \(\frac{5}{V} \)

12 ÷ 2 = _____ \(R \)

15 ÷ 5 = ______ \(E \)

20 ÷ 5 = _____ \(I \)

14 ÷ 7 = ______ \(G \)

144 ÷ 12 = ______ \(N \)

9 ÷ 9 = ______ \(H \)

99 ÷ 9 = ______ \(O \)

15 ÷ 1 = ______ \(T \)

120 ÷ 12 = ______ \(M \)

56 ÷ 7 = ______ \(A \)

13 ÷ 1 = ______ \(F \)

18 ÷ 2 = ______ \(S \)

35 ÷ 5 = ______ \(W \)

60 ÷ 2 = ______ \(D \)
Perimeter and Area

<table>
<thead>
<tr>
<th>Perimeter</th>
<th>Area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perimeter is the distance around a shape. If the shape is a rectangle, it has four sides. Add the length of all four sides in order to find the perimeter.</td>
<td>Area is the number of square units needed to cover the entire surface. You can find the area by counting all of the numbers of squares in a unit, or multiplying the base by the height.</td>
</tr>
<tr>
<td> 8 units 12 units 8 units</td>
<td> 8 units 12 units 8 units</td>
</tr>
<tr>
<td>[8 + 12 + 8 + 12 = 40 \text{ units}]</td>
<td>[8 \times 12 = 96 \text{ sq. units}]</td>
</tr>
</tbody>
</table>
Pick Five

Circle five items that you would want to have in your garden. You will need to refer back to this page to answer future questions.

- Area: 14 square units
 - Perimeter: 12 units

- Area: 24 square units
 - Perimeter: 20 units

- Area: 10 square units
 - Perimeter: 40 units

- Area: 45 square units

- Area: 15 square units
 - Perimeter: 8 units
Garden Blueprint

Name __________________

Use the graph on the next page to plan your garden. Start by adding your “Pick Five” items, and you may add more if you have space. Complete the following chart. Each item is labeled A-J, use this label in the chart and also on your blueprint.

<table>
<thead>
<tr>
<th>Item</th>
<th>Area</th>
<th>Perimeter</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Garden Blueprint

Use this page to plan your garden. Make sure to label all of your plots.
You must follow the following rules when buying supplies for your garden.

<table>
<thead>
<tr>
<th>Item</th>
<th>Rules</th>
<th>How many items will you need for your garden?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Watering Can</td>
<td>One watering can for every plot with an area of over 30 square units.</td>
<td></td>
</tr>
<tr>
<td>Seed Packet</td>
<td>One seed packet for every 10 square units of area in each plot. Round up. (Example: If the area is 28 square units, that plot will require three seed packets).</td>
<td></td>
</tr>
<tr>
<td>Shovel</td>
<td>No rules, buy as many as you would like.</td>
<td></td>
</tr>
<tr>
<td>Bag of Soil</td>
<td>One bag of soil for every plot that has more than 30 units of perimeter.</td>
<td></td>
</tr>
<tr>
<td>Pot</td>
<td>Buy one pot for every plot that is growing flowers.</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Cost per item</td>
<td>How many?</td>
</tr>
<tr>
<td>--------------</td>
<td>------------------------</td>
<td>-----------</td>
</tr>
<tr>
<td>Watering Can</td>
<td>$4.75 per watering can</td>
<td></td>
</tr>
<tr>
<td>Seed Packet</td>
<td>$2.25 per seed packet</td>
<td></td>
</tr>
<tr>
<td>Shovel</td>
<td>$1.25 per shovel</td>
<td></td>
</tr>
<tr>
<td>Bag of Soil</td>
<td>$2.75 per bag of soil</td>
<td></td>
</tr>
<tr>
<td>Pot</td>
<td>$5.25 per pot</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Reteach
Areas of Rectangles and Squares

Area is the number of square units needed to cover a figure. To find the area of a rectangle or square, you can multiply its length times its width. This can be shown by a formula.

Find the area of the rectangle. Use the formula \(A = \ell w \), where \(A \) = area, \(\ell \) = length, and \(w \) = width.

\[
\begin{align*}
A &= \ell w \\
A &= 13 \times 4 \\
A &= 52 \text{ square inches}
\end{align*}
\]

Find the area of the square. Use the formula \(A = s \times s \) or \(s^2 \), where \(A \) = area and \(s \) = length of a side.

\[
\begin{align*}
A &= s^2 \\
A &= 29 \times 29 \\
A &= 841 \text{ square meters}
\end{align*}
\]

Find the area of each rectangle or square.

1. \[
\begin{align*}
A &= \ell w \\
A &= \underline{7} \times \underline{5} \\
A &= \underline{35} \text{ in}^2
\end{align*}
\]

2. \[
\begin{align*}
A &= s^2 \\
A &= \underline{5} \times \underline{5} \\
A &= \underline{25} \text{ ft}^2
\end{align*}
\]

3. \[
\begin{align*}
A &= \ell w \\
A &= \underline{18} \times \underline{36} \\
A &= \underline{648} \text{ cm}^2
\end{align*}
\]

4. \[
\begin{align*}
A &= \ell w \\
A &= \underline{10} \times \underline{25} \\
A &= \underline{250} \text{ in}^2
\end{align*}
\]

5. \[
\begin{align*}
A &= s^2 \\
A &= \underline{8} \times \underline{8} \\
A &= \underline{64} \text{ m}^2
\end{align*}
\]

6. \[
\begin{align*}
A &= \ell w \\
A &= \underline{76} \times \underline{49} \\
A &= \underline{3724} \text{ ft}^2
\end{align*}
\]
Cubes of small numbers

What is 2^3?

\[2 \times 2 \times 2 = 8\]

2 in.

What is the volume of this cube?

\[2 \text{ in.} \times 2 \text{ in.} \times 2 \text{ in.} = 8 \text{ in.}^3\]

You find the volume of a cube in the same way you work out the cube of a number.

<table>
<thead>
<tr>
<th>3^3</th>
<th>4^3</th>
<th>5^3</th>
<th>2^3</th>
</tr>
</thead>
</table>

Use extra paper here if you need to. What is...

What are the volumes of these cubes?

- $7 \text{ in.} \times 7 \text{ in.} \times 7 \text{ in.} = \text{in.}^3$
- $8 \text{ in.} \times 8 \text{ in.} \times 8 \text{ in.} = \text{in.}^3$
- $9 \text{ in.} \times 9 \text{ in.} \times 9 \text{ in.} = \text{in.}^3$
- $10 \text{ in.} \times 10 \text{ in.} \times 10 \text{ in.} = \text{in.}^3$

© Dorling Kindersley Limited [2010]
Reteach

Volume of Prisms

Volume is the amount of space a three-dimensional figure encloses. To find the volume of a rectangular prism, you can use a formula.

Find the volume of the rectangular prism. Use the formula $V = \ell w h$, where $V =$ volume, $\ell =$ length, $w =$ width, and $h =$ height.

\[V = \ell w h \]
\[V = 4 \times 3 \times 5 \]
\[V = 60 \text{ cubic units} \]

Find the volume of each prism.

1. \[\ell = \text{______ units} \]
 \[w = \text{______ units} \]
 \[h = \text{______ units} \]
 \[V = \text{______ cubic units} \]

2. \[\ell = \text{______ units} \]
 \[w = \text{______ units} \]
 \[h = \text{______ units} \]
 \[V = \text{______ cubic units} \]

3. \[\ell = \text{______ units} \]
 \[w = \text{______ units} \]
 \[h = \text{______ units} \]
 \[V = \text{______ cubic units} \]
Irregular Volume Shapes

Volume is the measure of space inside of a solid object.
Volume is measured in cubic units (mm3, ft3).

Shape A: \(V = 1 \text{ cm} \times 1 \text{ cm} \times 2 \text{ cm} \)
\(V = 2 \text{ cm}^3 \)

Shape B: \(V = 5\text{ cm} \times 1 \text{ cm} \times 1 \text{ cm} \)
\(V = 5 \text{ cm}^3 \)

Total Volume: \(2 \text{ cm}^3 + 5 \text{ cm}^3 = 7 \text{ cm}^3 \)

Volume = 7 cm3

Directions: Calculate the volume of the shapes and explain how you got your answer.

To find the volume of an irregular shape, separate the shape into rectangular prisms. Calculate the volume for each shape, and then add the volume of the shapes together to get the volume of the larger shape.

\(V = \text{length} \times \text{width} \times \text{height} \).

Show your work.

Explain your answer.

Show your work.

Explain your answer.
Multiplication Practice
Fill in the missing number

Test your multiplication skills by writing in the correct number to make the problem true.

1. $8 \times \square = 40$
2. $6 \times \square = 18$
3. $5 \times \square = 55$
4. $4 \times \square = 16$
5. $9 \times \square = 36$
6. $7 \times \square = 21$
7. $2 \times \square = 18$
8. $4 \times \square = 20$
9. $3 \times \square = 27$
10. $10 \times \square = 100$
11. $9 \times \square = 63$
12. $8 \times \square = 56$
13. $12 \times \square = 72$
14. $6 \times \square = 30$
15. $7 \times \square = 0$
16. $5 \times \square = 15$
17. $4 \times \square = 28$
18. $8 \times \square = 24$
19. $11 \times \square = 121$
20. $2 \times \square = 8$
21. $9 \times \square = 54$
1. Kim invites 12 of her friends to a backyard BBQ. If she plans for each person to eat 3 hot dogs, how many hot dogs must she buy?

2. The Johnson family is taking a vacation in Southern California. They plan to spend 3 days in Los Angeles, 2 days in San Diego and 4 days in Santa Barbara. How many days will they spend on vacation?

3. Stan and Lisa visit the county fair. If they wait in line for 15 minutes to ride each attraction, how many attractions can they ride in 4 hours?

4. Allen attended his first baseball game last summer. If the 9-inning game lasted 3 hours, what was the average amount of time each inning lasted?

5. Gina builds 24 sand castles at the beach. If a wave knocks down 13 of them, how many sand castles are left?
Converting Fractions, Decimals, and Percents

<table>
<thead>
<tr>
<th>fraction</th>
<th>decimal</th>
<th>percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\frac{15}{100}$</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>$\frac{73}{100}$</td>
<td></td>
<td>73%</td>
</tr>
<tr>
<td>$\frac{4}{100}$</td>
<td></td>
<td>39%</td>
</tr>
<tr>
<td>$\frac{.77}{100}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{50}{100}$</td>
<td></td>
<td>46%</td>
</tr>
<tr>
<td>$\frac{.06}{100}$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\frac{26}{100}$</td>
<td></td>
<td>80%</td>
</tr>
</tbody>
</table>
Money: Decimals and Fractions

.10 = \(\frac{1}{10} \) = one tenth
.01 = \(\frac{1}{100} \) = one hundredth

64¢ or $0.64 = \frac{6}{10} + \frac{4}{100} \) or six tenths plus four hundredths of a dollar

$2.05 = \) two dollars plus \(\frac{5}{100} \) or five hundredths of a dollar

Write each value in decimal number form.

1. Three tenths plus two hundredths of a dollar

2. Seven tenths plus five hundredths of a dollar

3. Eight tenths plus one hundredth of a dollar

4. Nine tenths of a dollar

5. Two tenths plus nine hundredths of a dollar

6. \(\frac{5}{10} + \frac{3}{100} \) of a dollar

7. \(\frac{7}{10} \) of a dollar

8. Two dollars plus \(\frac{4}{10} \) of a dollar

9. Four dollars plus \(\frac{1}{100} \) of a dollar

10. Five dollars plus six tenths of a dollar

11. Ten dollars plus \(\frac{1}{10} \) of a dollar

12. One dollar plus nine hundredths of a dollar

\(\underline{0.32} \)
The **distributive property** is a tool to make multiplication with larger numbers easier.

To use the distributive property:
Break one factor into two addends, multiply both addends by the other factor, and add together both products.

Break it Up: Distributive Property 1

Directions: Fill in the blanks to solve each problem below using the distributive property.

1. \[8 \times 9\]
 \[8 \times (3 + 6)\]
 \[(8 \times \underline{}) + (8 \times \underline{})\]
 \[\underline{} + \underline{}\]
 \[8 \times 9 = \underline{}\]

2. \[12 \times 3\]
 \[(\underline{} + 2) \times 3\]
 \[(\underline{} \times 3) + (2 \times 3)\]
 \[\underline{} + \underline{}\]
 \[12 \times 3 = \underline{}\]

3. \[4 \times 13\]
 \[4 \times (\underline{} + \underline{})\]
 \[(4 \times \underline{}) + (4 \times \underline{})\]
 \[\underline{} + \underline{}\]
 \[4 \times 13 = \underline{}\]

4. \[14 \times 6\]
 \[(\underline{} + \underline{}) \times 6\]
 \[(\underline{} \times 6) + (\underline{} \times 6)\]
 \[\underline{} + \underline{}\]
 \[14 \times 6 = \underline{}\]

5. \[3 \times 16\]
 \[\underline{} \times (\underline{} + \underline{})\]
 \[(\underline{} \times \underline{}) + (\underline{} \times \underline{})\]
 \[\underline{} + \underline{}\]
 \[3 \times 16 = \underline{}\]

6. \[17 \times 5\]
 \[(\underline{} + \underline{}) \times \underline{}\]
 \[(\underline{} \times \underline{}) + (\underline{} \times \underline{})\]
 \[\underline{} + \underline{}\]
 \[17 \times 5 = \underline{}\]
Growing by Powers of Ten Chart

Expanded form is a way of writing numbers to see the math value of individual digits.

\[10 \times 10 \times 10 \quad \text{or} \quad 100 + 20 + 3 \]

Standard form is the total value of the numbers (not in expanded form).

\[1,000 \quad \text{or} \quad 123 \]

Place value is the number value a digit has based on its position in a number.

<table>
<thead>
<tr>
<th>Place Value Chart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Millions</td>
</tr>
<tr>
<td>Thousands</td>
</tr>
<tr>
<td>Ones</td>
</tr>
<tr>
<td>Hundred Millions</td>
</tr>
<tr>
<td>Ten Millions</td>
</tr>
<tr>
<td>Millions</td>
</tr>
<tr>
<td>Hundred Thousands</td>
</tr>
<tr>
<td>Ten Thousands</td>
</tr>
<tr>
<td>Thousands</td>
</tr>
<tr>
<td>Hundreds</td>
</tr>
<tr>
<td>Tens</td>
</tr>
<tr>
<td>Ones</td>
</tr>
</tbody>
</table>

Directions: Complete the chart with the missing information.

<table>
<thead>
<tr>
<th>Row</th>
<th>Powers of 10</th>
<th>Expanded Form</th>
<th>Standard Form</th>
<th>Place Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(10^0)</td>
<td>1</td>
<td></td>
<td>Ones</td>
</tr>
<tr>
<td>2</td>
<td>(10^1)</td>
<td></td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>(10^2)</td>
<td>10 \times 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>(10^4)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>(10^6)</td>
<td>10 \times 10 \times 10 \times 10 \times 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>(10^8)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10 \times 10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Place Value Puzzle

Read each clue to help you figure out the eight-digit number.

1. Multiply 3 by the number of days in a week. Subtract 12 and write your answer in the thousands place.
2. Add 3 to the difference between 5 and 2. Write your answer in the ones place.
3. Divide the number in the thousands place by itself and then multiply the answer by 0. Write your answer in the tenths place.
4. Subtract the number of days in a weekend from the number of days in February (non-leap year). Divide your answer by 2. Subtract the number in the thousands place from that answer. Write your new answer in the hundredths place.
5. Add the numbers from the tenths, hundredths and ones place, and then divide by 2. Write your answer in the tens place.
6. Divide 16 into the number of hours in two days and write your answer in the hundred thousands place.
7. Multiply the number in the hundred thousands place by the number in the thousands place. Subtract 20 from that answer. Write your new answer in the ten thousands place.
8. Subtract the number in the tens place from the number in the ones place. Write your answer in the hundreds place.

Find worksheets, games, lessons & more at education.com/resources
© 2007 - 2019 Education.com
Reteach

Division Patterns

A quotient is the result of dividing one number by another. A dividend is the number that is divided. The divisor is the number by which the dividend is divided.

Basic facts and patterns can help you divide by multiples of 10. Look at the patterns below:

\[
\begin{align*}
28 \div 7 &= 4 & 280 \div 7 &= 40 \\
2,800 \div 7 &= 400 & 2,800 \div 700 &= 4 \\
28,000 \div 7 &= 4,000 & 28,000 \div 7,000 &= 4
\end{align*}
\]

Find \(420 \div 60\).

Since 420 is a multiple of 10, you can use the basic fact and continue the pattern:

\[
\begin{align*}
420 \div 60 &= \\
42 \div 6 &= 7
\end{align*}
\]

You can also cross out zeros to make division easier:

\[
420 \div 60 = 42 \div 6 = 7
\]

Be sure to cross out the same number of zeros in the dividend and divisor.

Divide mentally.

1. \(630 \div 7 = \) ________
2. \(810 \div 90 = \) ________
3. \(480 \div 4 = \) ________

4. \(240 \div 20 = \) ________
5. \(550 \div 50 = \) ________
6. \(400 \div 8 = \) ________

7. \(360 \div 6 = \) ________
8. \(800 \div 10 = \) ________
9. \(270 \div 30 = \) ________

10. \(4,900 \div 7 = \) ________
11. \(5,600 \div 80 = \) ________
12. \(6,300 \div 9 = \) ________

13. \(2,500 \div 5 = \) ________
14. \(1,600 \div 20 = \) ________
15. \(900 \div 3 = \) ________
See how many of the following mixed math problems you can solve in 1 minute

1 Minute Math
Mixed

Score: ____________
Date: ____________

8 - 5 ______ 7 + 8 ______ 3 + 3 ______ 3 - 1 ______ 3 - 2 ______ 9 x 8 ______

3 + 5 ______ 6 - 4 ______ 9 x 1 ______ 9 - 4 ______ 6 + 6 ______ 7 x 5 ______

18 ÷ 9 ______ 7 x 2 ______ 3 ÷ 3 ______ 63 ÷ 9 ______ 8 x 9 ______ 4 - 3 ______

3 + 4 ______ 6 + 7 ______ 7 ÷ 1 ______ 63 ÷ 7 ______ 9 - 7 ______ 18 ÷ 6 ______

x 3 ______ x 1 ______ + 3 ______ - 7 ______ - 3 ______ - 3 ______

8 x 5 ______ + 5 ______ x 1 ______ 7 x 3 ______ 8 ÷ 5 ______ 40 + 4 ______

16 ÷ 8 ______ 16 ÷ 2 ______ 20 ÷ 4 ______ 64 ÷ 8 ______ 2 x 1 ______ + 8 ______

3 + 6 ______ 4 + 9 ______ x 1 ______ 18 ÷ 2 ______ 3 x 4 ______ + 8 ______
Reteach

Surface Areas of Prisms

You can find the surface area of a rectangular prism by finding the total area of all its faces. Each face is a rectangle, so use the formula $A = lw$ to find the area of each face.

Find the surface area of this rectangular prism.

Front face: $5 \times 5 = 25$ square units
Back face: $5 \times 5 = 25$ square units
Top face: $5 \times 6 = 30$ square units
Bottom face: $5 \times 6 = 30$ square units
Right face: $5 \times 6 = 30$ square units
Left face: $5 \times 6 = 30$ square units
Total surface area: 170 square units

Find the surface area of each rectangular prism.

1.

Front face: ___ ___ = ___ square units
Back face: ___ ___ = ___ square units
Top face: ___ ___ = ___ square units
Bottom face: ___ ___ = ___ square units
Right face: ___ ___ = ___ square units
Left face: ___ ___ = ___ square units
Total surface area: ___ square units

2.
12 cm
7 cm

Front face: ___ ___ = ___ cm²
Back face: ___ ___ = ___ cm²
Top face: ___ ___ = ___ cm²
Bottom face: ___ ___ = ___ cm²
Right face: ___ ___ = ___ cm²
Left face: ___ ___ = ___ cm²
Total surface area: ___ cm²
Find the surface area of the following figures.

1. Surface area = _______

2. Surface area = _______

3. Surface area = _______
Least Common Multiple: Hard

A multiple is the product of two integers. To find the multiples of a certain number, multiply that number by every integer, starting with 1.

Example: Multiples of 10 are 10, 20, 30, 40, 50, and so on.

Common multiples are numbers that share two or more of the same multiples.

Example: Multiples of 10 are 10, 20, 30, 40, 50, 60, and so on.

Multiples of 15 are 15, 30, 45, 60, 75, and so on.

30 and 60 appears in these lists, so they are common multiples of 10 and 15.

Least common multiple (LCM) is the smallest common multiple of two or more numbers.
From the example above, the LCM of 10 and 15 is 30.
LCM can be found by listing all the multiples and looking for the smallest common one in the lists

Find the least common multiple of numbers below. Follow the directions.

Multiples of 9 = 9, 18, , , , , , , ...

Multiples of 15 = 15, 30, , , , , , , ...

The common multiple is . The LCM is .

Multiples of 20 = , , , , , , , ...

Multiples of 30 = , , , , , , , ...

The common multiples are . The LCM is .

Multiples of 10 = , , , , , , , ...

Multiples of 20 = , , , , , , , ...

Multiples of 50 = , , , , , , , ...

The common multiples are . The LCM is .
Greatest Common Factors

Name: ____________________________ Date: ______________

EXAMPLE

- 8
- Common Factors: 1, 2, 4

Draw factor rainbows to find the greatest common factors for each pair of numbers:

a. 36, 24

b. 40, 32
Fraction Action! Writing The Lowest Form

To reduce a fraction, first find the common factor of the numerator and the denominator.

The numerator $\rightarrow \frac{6}{9}$
The denominator $\rightarrow \frac{6}{9}$

The common factor of 6 and 9 is 3 because $6 = 2 \times 3$ and $9 = 3 \times 3$.

Then, divide the numerator and denominator by 3.

divide the numerator $\rightarrow \frac{6}{9} \div 3$
divide the denominator $\rightarrow \frac{6}{9} \div 3$

Therefore, the reduced form of $\frac{6}{9}$ is $\frac{2}{3}$.

Find the lowest form of the fractions below. Write it down. Show your work.

\[
\begin{array}{c}
\frac{4}{12} \\
\frac{5}{30} \\
\frac{8}{24} \\
\end{array}
\]

Fill in the missing numerator or denominator.

\[
\begin{array}{c|c}
\frac{7}{35} = \frac{1}{()} & \frac{3}{63} = \frac{1}{()} \\
6 = \frac{6}{()} & 9 = \frac{33}{()} \\
\end{array}
\]
Multiplying Fractions

-When multiplying fractions, you simply multiply across.
-First, you multiply the numerators.
-Next, you multiply the denominators.
-Finally, you reduce the fraction if necessary.

Example: \(\frac{4}{5} \times \frac{2}{8} = \frac{8}{40} = \frac{1}{5} \)

For each problem below, follow the steps used in the example to find your solution.
Be sure to reduce your fraction to its lowest terms.

1) \(\frac{3}{6} \times \frac{3}{2} = ? \)

2) \(\frac{4}{7} \times \frac{5}{8} = ? \)

3) \(\frac{5}{10} \times \frac{2}{1} = ? \)

4) \(\frac{15}{17} \times \frac{6}{6} = ? \)

5) \(\frac{20}{40} \times \frac{2}{2} = ? \)

6) \(\frac{2}{6} \times \frac{6}{2} = ? \)

7) \(\frac{5}{25} \times \frac{4}{1} = ? \)

8) \(\frac{9}{9} \times \frac{1}{1} = ? \)
Kelly's mom is making a tuna pasta bake for a sick friend. She wants to make two batches. The first batch is for her friend to eat right away. So Kelly's mom needs to make the recipe smaller. Can you help her? The second batch is for her friend to put in the freezer for a later date. Kelly's mom wants to triple the recipe. Help her calculate the correct amounts.

Multiply each ingredient's amount by 2/5 and 3.

<table>
<thead>
<tr>
<th>Measurement</th>
<th>x</th>
<th>2/5</th>
<th>3</th>
<th>Ingredient</th>
</tr>
</thead>
<tbody>
<tr>
<td>3/4 lb. pasta</td>
<td></td>
<td></td>
<td></td>
<td>pasta</td>
</tr>
<tr>
<td>5 oz. tuna</td>
<td></td>
<td></td>
<td></td>
<td>tuna</td>
</tr>
<tr>
<td>1 can cream of mushroom soup</td>
<td></td>
<td></td>
<td></td>
<td>mushroom soup</td>
</tr>
<tr>
<td>1/2 cup milk</td>
<td></td>
<td></td>
<td></td>
<td>milk</td>
</tr>
<tr>
<td>1/4 cup sour cream</td>
<td></td>
<td></td>
<td></td>
<td>sour cream</td>
</tr>
<tr>
<td>3/2 cup corn and onion</td>
<td></td>
<td></td>
<td></td>
<td>corn and onion</td>
</tr>
<tr>
<td>2/3 cup cheese, grated</td>
<td></td>
<td></td>
<td></td>
<td>cheese</td>
</tr>
</tbody>
</table>
DIVISION: Extra Practice

Solve the division problems:

\[\begin{array}{ccc}
4 & 76 & 10 \quad 110 \\
\div 19 & \underline{4} & \underline{2} \\
\quad & \underline{36} & \underline{80} \\
\quad & \underline{36} & \\
\quad & 0 & \\
12 & 132 & 8 \quad 16 \\
\div 12 & \underline{6} & \underline{2} \\
\quad & \underline{42} & \underline{144} \\
\quad & \underline{36} & \\
\quad & 0 & \\
2 & 114 & 6 \quad 102 \\
\div 2 & \underline{6} & \\
\quad & \underline{70} & \\
\quad & \underline{102} & \\
\quad & & \\
\end{array} \]
1. Emily wants to make 1,000 paper cranes. She can make eight cranes a day. If she has already made 304 cranes, how many days are left till she makes the rest of the 1,000 paper cranes?

2. Mike's Deli just sold 328 ham sandwiches this week. Around how many ham sandwiches did Mike sell every day this week? (Round to the nearest number)

3. Don's reading group has read 168 books this year. His reading group has six members. Each member read the same amount of books. How many books did each member read?

4. Judy is having a birthday party. She invited seven friends over and made 98 cookies for party favors. How many cookies did each friend get?

5. Today Susan sold 126 cookies in total. There are 9 cookies in each box. How many boxes of cookies did she sell today?
Kramsters are very picky eaters. Feed each kramster the correct number of pellets by converting the following improper fractions to mixed numbers. Color in the pellets to match each mixed number.

Example: \(\frac{13}{4} \) \[\to \left\lfloor 3 \frac{1}{4} \right\rfloor \]

\[\frac{12}{6} \]

\[\frac{15}{4} \]

\[\frac{3}{2} \]

\[\frac{14}{5} \]

For the last one, shade in the pellets without guidelines.

\[\frac{20}{6} \]
Reteach
Improper Fractions

An **improper fraction** is a fraction that has a numerator that is greater than or equal to its denominator.

Example: \(\frac{7}{4}, \frac{8}{6}, \frac{9}{2}, \frac{2}{2} \)

A **mixed number** has a whole number and a fraction.

Example: \(5 \frac{1}{3}, 3 \frac{1}{2}, 6 \frac{2}{5} \)

Renaming an Improper Fraction
To write an improper fraction as a mixed number, divide the numerator by the denominator. Write the remainder as a fraction of the divisor.

*Example: \(\frac{8}{3} \) = \(\frac{8 \div 3}{3} \)\(\) \(\rightarrow \) \(2 \frac{2}{3} \)

*Example: \(\frac{19}{4} \) = \(\frac{19 \div 4}{4} \)\(\) \(\rightarrow \) \(4 \frac{3}{4} \)

Write each improper fraction as a mixed number.

1. \(\frac{15}{2} \)
2. \(\frac{18}{5} \)
3. \(\frac{9}{4} \)
4. \(\frac{4}{3} \)
5. \(\frac{7}{2} \)
6. \(\frac{19}{6} \)
7. \(\frac{17}{2} \)
8. \(\frac{9}{8} \)
9. \(\frac{13}{2} \)
10. \(\frac{7}{4} \)
11. \(\frac{27}{7} \)
12. \(\frac{29}{8} \)
13. \(\frac{23}{3} \)
14. \(\frac{33}{5} \)
15. \(\frac{19}{2} \)
Reteach

Mixed Numbers

A **mixed number** is made up of a whole number and a fraction. An **improper fraction** is a fraction in which the numerator is greater than or equal to the denominator.

Write $2\frac{2}{3}$ as an improper fraction.

Step 1
Multiply the whole number by the denominator.

$$2 \times 3 = 6$$

Step 2
Add the numerator to the product.

$$6 + 2 = 8$$

Step 3
Write the sum over the denominator.

$$\frac{2}{3} = \frac{8}{3}$$

Write each mixed number as an improper fraction.

1. $2\frac{2}{7}$
2. $5\frac{3}{4}$
3. $6\frac{5}{8}$

4. $3\frac{4}{10}$
5. $9\frac{1}{3}$
6. $4\frac{4}{5}$

7. $1\frac{1}{6}$
8. $3\frac{1}{2}$
9. $2\frac{2}{5}$

10. $2\frac{2}{3}$
11. $1\frac{3}{4}$
12. $1\frac{1}{5}$

13. $6\frac{2}{3}$
14. $3\frac{2}{5}$
15. $4\frac{1}{2}$

16. $1\frac{4}{5}$
17. $3\frac{5}{8}$
18. $2\frac{2}{3}$
SELLING FRACTIONS

Mona is selling her pies at the school bake sale. She has 2 different types of pies, apple and lemon meringue. She has 4 of each pie.

prices

$12 for a whole Lemon Meringue Pie
$7 1/2 Lemon Meringue Pie
$2 1/8 (a slice) Lemon Meringue Pie
$10 for a whole Apple Pie
$6 1/2 an Apple Pie
$1 1/8 (a slice) Apple Pie

Carol loves Mona’s pies. She buys a whole Lemon Meringue pie and 3/4 of an Apple Pie.

How much money did she pay? ____________________________

Brett loves apples so he buys 5/8 of an apple pie.

How much money did he pay? ____________________________

Lulu can only afford 2 slices of each pie.

How much money did she pay? ____________________________

Timothy likes apples but his parents want the lemon meringue pie. To compromise he buys a whole apple pie for himself and 3/4 of the lemon meringue pie for his parents.

How much money did he pay? ____________________________

In total how much money did Mona make? ____________________________

How many apple pies are left over? ____________________________

How many lemon meringue pies are left?

Find worksheets, games, lessons & more at education.com/resources
Measuring Cup Musings

Liquid Volume is the quantity of three-dimensional space liquid occupies at rest.

This measuring cup has 2 cups of water in it.
What is the smallest amount it can measure in ounces (oz.)?
Answer: 2 oz.

Directions: Use the measuring cup to help you answer the following questions.

1. How much water will the measuring cup have if you poured 1/2 of it out?
2. How many ounces of water is equal to 1 1/4 cup of water?
3. Thirty-two ounces of water is equivalent to how many cups of water?
4. Two-fourths cup of water is how much in ounces?
5. How many cups are in 64 ounces?
6. How many ounces of water are equal to 6/8 cups of water?
<table>
<thead>
<tr>
<th>Operation</th>
<th>Number</th>
<th>Operation</th>
<th>Number</th>
<th>Operation</th>
<th>Number</th>
<th>Operation</th>
<th>Number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>64</td>
<td>Subtraction</td>
<td>2</td>
<td>Addition</td>
<td>6</td>
<td>Subtraction</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>÷ 8</td>
<td></td>
<td>+ 8</td>
<td></td>
<td>÷ 8</td>
<td></td>
<td>÷ 8</td>
</tr>
<tr>
<td></td>
<td>18</td>
<td>× 1</td>
<td>1</td>
<td>+ 3</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>÷ 2</td>
<td></td>
<td>+ 8</td>
<td></td>
<td>+ 6</td>
<td></td>
<td>+ 4</td>
</tr>
<tr>
<td></td>
<td>63</td>
<td>− 7</td>
<td>9</td>
<td>− 3</td>
<td>18</td>
<td>− 3</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>÷ 7</td>
<td></td>
<td>+ 6</td>
<td></td>
<td>+ 4</td>
<td>× 3</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>7</td>
<td>− 7</td>
<td>4</td>
<td>− 3</td>
<td>1</td>
<td>× 1</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Multiplication</td>
<td>8</td>
<td>Division</td>
<td>40</td>
<td>Addition</td>
<td>2</td>
<td>Multiplication</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>× 3</td>
<td>÷ 5</td>
<td>40</td>
<td>+ 4</td>
<td>5</td>
<td>× 3</td>
<td>8</td>
</tr>
<tr>
<td></td>
<td>− 1</td>
<td>− 2</td>
<td>9</td>
<td>− 5</td>
<td>5</td>
<td>+ 3</td>
<td>7</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
<td>9</td>
<td>Addition</td>
<td>6</td>
<td>Multiplication</td>
<td>7</td>
<td>Subtraction</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>− 4</td>
<td>+ 6</td>
<td>5</td>
<td>× 5</td>
<td>3</td>
<td>− 4</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtraction</td>
<td>63</td>
<td>Multiplication</td>
<td>8</td>
<td>Subtraction</td>
<td>4</td>
<td>Multiplication</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>÷ 9</td>
<td>× 9</td>
<td>− 3</td>
<td></td>
<td>9</td>
<td>÷ 2</td>
<td>3</td>
</tr>
</tbody>
</table>
Find The Missing Operation #2

Add the operation symbols: addition (+), subtraction (-), multiplication (x), or division (÷) to complete the equation.

(8 - 5) 6 = 9 (7 + 4) 7 = 18
(12 + 6) 4 = 14 (22 - 3) 9 = 10
(3 x 7) 4 = 25 (6 x 5) 3 = 33
(4 x 2) 6 = 48 (3 x 3) 2 = 11
(30 - 15) 3 = 5 (10 - 2) 7 = 56
(24 - 10) 1 = 14 (7 x 7) 3 = 52
(100 - 80) 4 = 5 (45 - 18) 9 = 3
What's my number?

Read each clue and follow the math to find the answer.
Hint: try reading the clue backward.

1. Subtract 5 from me. Then add 2. If you subtract 10 and then add 3, you get 15. What number am I?

2. Add 7 to me. Then subtract 10. If you subtract 5 and then add 9, you get 14. What number am I?

3. Add 12 to me. Then add another 12. If you subtract 9 and then add 7, you get 24. What number am I?

4. Subtract 8 from me. Then add 9. If you add 12 and then subtract 4, you get 18. What number am I?
Number Search

Find and circle the five-digit numbers in the puzzle below.

19472 40872 74638
13057 41590 77077
12680 59382 81908
23058 52039 88835
22851 66831 91875
39671 62394 90098
31594 65761 99124

9 1 8 7 5 2 9 1 1 3 0 5 7 6 4 8 2 1 4 3 4 5
1 7 9 0 4 7 3 5 2 2 6 7 5 3 6 2 3 9 4 0 0 9
2 7 3 9 6 7 1 0 6 6 6 8 9 5 7 3 2 1 2 3 5 8 1
2 5 9 0 6 0 4 4 8 3 7 5 6 1 9 6 5 2 2 8 7 4
5 4 5 0 3 7 2 9 8 0 7 2 4 2 4 6 7 9 9 4 1 2 3
9 9 3 9 1 7 4 6 5 6 3 3 7 5 5 1 4 0 5 2 7 6
5 5 7 8 9 5 8 2 4 3 0 0 8 4 6 3 9 1 1 5 2 6
9 2 1 7 6 7 3 3 5 9 5 7 7 6 3 8 5 1 9 9 8 6
3 0 4 6 5 0 9 3 2 8 8 8 3 5 5 3 2 7 4 6 3 8
1 3 4 7 6 9 3 5 2 3 2 9 8 7 4 4 1 8 7 0 9 3
6 9 4 7 6 8 8 2 7 9 5 8 3 6 1 6 6 3 2 5 8 1
7 9 5 7 2 5 1 3 8 9 5 9 9 1 2 4 3 8 7 9 3 5
4 1 5 9 0 0 9 2 6 7 4 9 9 1 4 6 2 5 8 7 9 1
5 8 7 9 2 4 0 3 5 4 7 8 1 2 6 5 8 9 2 4 6 7
3 2 4 4 2 2 8 5 1 1 5 7 3 6 3 5 9 3 8 2 2 9
2 6 8 7 9 0 4 5 3 3 6 8 2 1 1 5 8 7 9 3 4 6

Copyright 2011-2012 Education.com

Created by: education.com
www.education.com/worksheet

44
Geometry Town

Name: __________

~Using the clues below, create a map with geometric figures! Make sure you read the entire clue before you start drawing.

1. Draw a big rectangle to cover much of your paper. Draw a small compass rose in the bottom right corner.
2. Insert a triangular sign at the bottom left corner reading “Welcome to Geometry Town.”
3. Draw a road going from the sign (in number 2) to the upper right corner. Name this road Intersecting Road.
4. Starting at the bottom middle, draw another road going straight north or up. Name this road Perpendicular Street.
5. Insert a lake in the upper left hand corner in the shape of a pentagon. Name the lake Pentagon Lake.
6. Starting at the left side of the map, draw a new road going to the other side of the map, as long as it is perpendicular to Perpendicular Road. Name the new road Purple Street.
7. On the right side or east of Perpendicular Street, create a new town park named Polygon Park. It is in the shape of a trapezoid and has rides. Draw a hexagon shaped merry-go-round, a rectangular shaped monkey bars and a pyramid shaped slide. Don’t forget the swings, any shape.
8. Create a new street named Parallel Street. Make it parallel to Purple Street.
9. Intersecting Road intersects with other roads. Find an acute angle at an intersection and draw a big tree.
10. Intersecting Road intersects with other roads. Find an obtuse angle at an intersection and draw a Stop Sign in the shape of an Octagon.
11. Find a right angle anywhere on the map and draw a house and a mailbox.

Compare your map to your neighbors map. Are they similar? Discuss their similarities and their differences.